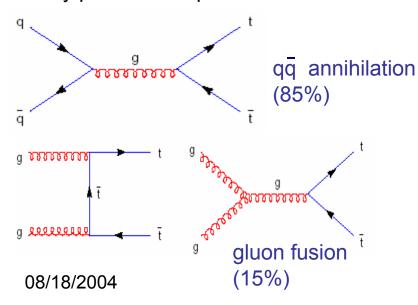


W Helicity Measurement in Top Quark Decays at DØ

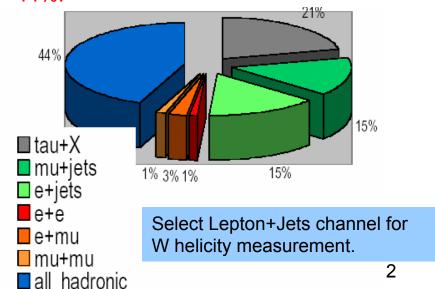
Ariel Schwartzman
Princeton University
On behalf of the DØ Collaboration

OUTLINE:

- Introduction: Top Quark Production and Decay at the Tevatron.
- Measurement of the W Helicity.
- Outlook.

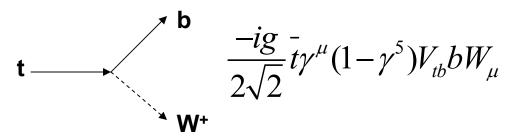

Top Quark Production and Decay

Large $m_t \Rightarrow$ probes physics at much higher energies than other fermions.

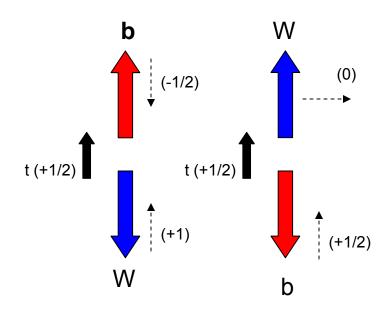

m_t>m_W, the W polarization in top decays is very different from that of other weak decays.

W helicity measurement is a test of the SM and an opportunity to look for new physics.

At the Tevatron \sqrt{s} = 1.96 GeV, top quarks are primarily produced in pairs



- Since $|V_{tb}| \sim 1$, the top quark almost always decays to Wb.
- Event topology depends on the W decay mode:
 - <u>Dilepton:</u> 2 high p_T leptons, 2 b-jets, large E_T^{mis} . BR(ee, $\mu\mu$, $e\mu$) = 5%.
 - <u>Lepton + Jets</u>: 1 high p_T lepton, 4jets (2 bjets), large E_T^{mis} . BR(e, μ) = 30%.
 - <u>All hadronic</u>: 6 high p_T jets (2 b-jets). BR = 44%.

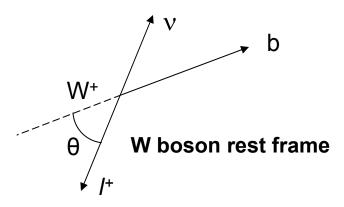

Weak Interaction of the Top Quark

V-A charged-current weak interaction:

- In the SM, top quarks decay as left-handed fermions through the V-A weak interaction.
- In the limit of massless b quark, the V-A coupling at the tbW vertex requires that the b quark in top decays is produced left handed.
- Angular momentum conservation only allows left-handed and longitudinal W helicity configurations.

- The nature of the tbW vertex have not yet been studied accurately.
- Sensitive to anomalous (non-SM) couplings.

Top quark rest frame


Polarized W Boson Decay

(0.7 0.6 0.6

0.3

0.2

0.1

• The angular distribution of the helicity states of the W boson is described by the angle between the lepton and the original W momentum in the W rest frame.

A measurement of the W helicity probes the underlying weak interaction of the top decay.

Observation of a V+A charged-current interaction would indicate physics beyond the SM.

$$f_{-} = \frac{2\frac{m_W^2}{m_T^2}}{1 + 2\frac{m_W^2}{m_T^2}} \approx 0.30 \qquad f_0 = \frac{1}{1 + 2\frac{m_W^2}{m_T^2}} \approx 0.70 \qquad f_{+} \approx 0$$
urements:
We want to measure for the property of the second second

Previous Run 1 measurements:

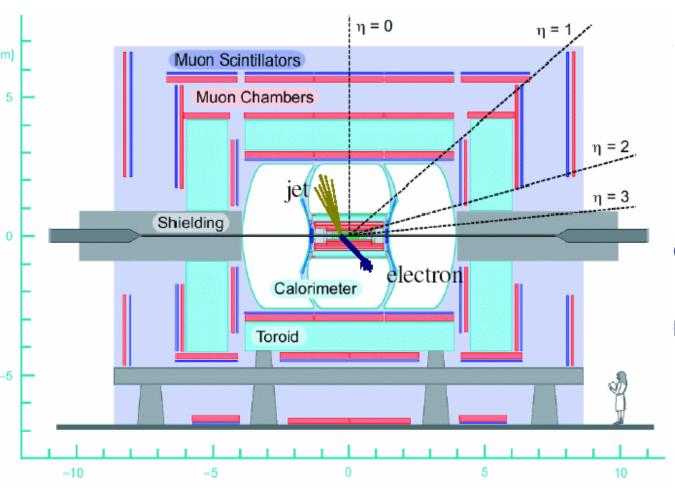
- CDF: $f_0 = 0.91 \pm 0.37 \pm 0.13$, $f_+=0.11 \pm 0.15$ (stat)
- DØ: $f_0 = 0.56 \pm 0.31 \pm 0.07$

We want to measure f₊.

Outline of the Analysis

- Event selection.
 - Lepton plus jets kinematic pre-selection:
 - W+jets.
 - tt̄.
 - Multi-jets.
 - b quark-jet tagging.

Two separate analyses:


- Topological
- b-tagging.

- Top quark identification:
 - Topological likelihood ⇒ separate top quark from W+jets.
 - Kinematic constraint fit ⇒ reconstruct four-vectors of final state particles.
- Measure $cos(\theta)$ for each selected event.
- Compare the measured distribution of cos(θ) to its expectation from background and signal templates with different V+A fractions (f₀ is fixed at its SM value).
- Determine the most likely value of f₊:
 - Binned likelihood fit to cos(θ) distribution.
 - Confidence interval for f₊.

Integrated Luminosity:

- e+jets: 168.7 pb⁻¹.
- μ+jets 158.4 pb⁻¹.

The DØ Detector

Tracking:

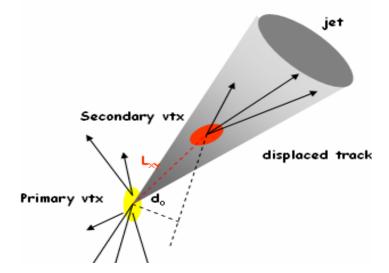
- Silicon and Fiber tracker.
- 2T magnetic field.
- Central and Forward pre-shower.

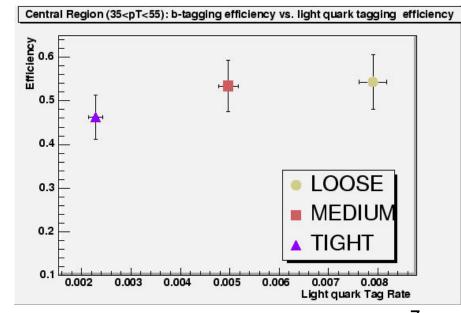
Calorimeter:

New electronics.

Muon detector:

- 1.8 T Toroid.
- $|\eta| < 2$.

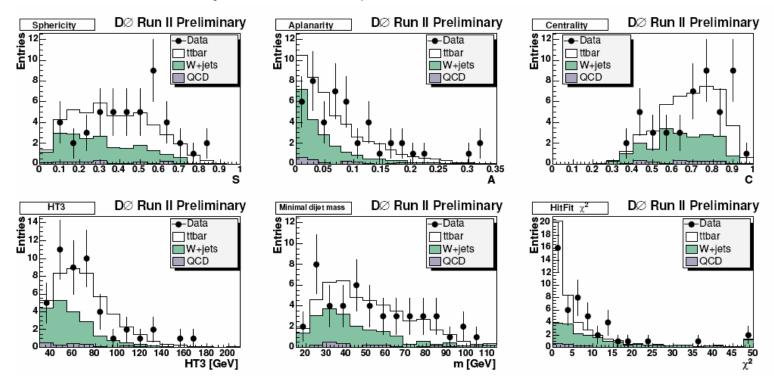

Event Pre-Selection


Kinematics Selection:

- \geq 1 isolated e, p_T>20GeV, | η |<1.1 or 1 isolated μ , p_T>20 GeV, | η |<2.0.
- Missing transverse energy (E_T^{mis})>20 GeV.
- 4 or more jets, $p_T>15$ GeV, $|\eta|<2.5$.

b-tag analysis: ≥1 b-tagged jet (Secondary Vertex Algorithm)

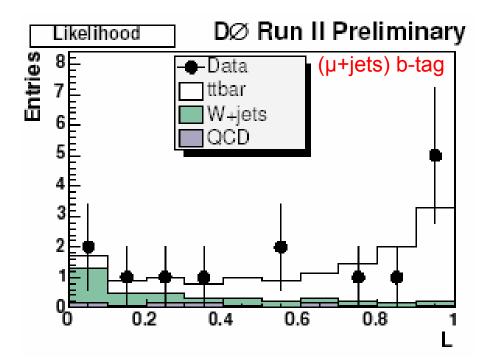
- Find track-jets
- Find secondary vertices within jets.
- Select significantly displaced vertices.



Topological Selection

Both analyses use a 6-variable topological likelihood to discriminate tt from W+jets events.

- Top quark events are more spherically and centrally produced and have larger transverse energy than W+jets.
- Optimized to maximize the statistical significance between V+A and V-A decays.
- Likelihood cut efficiency is almost independent of f₊.

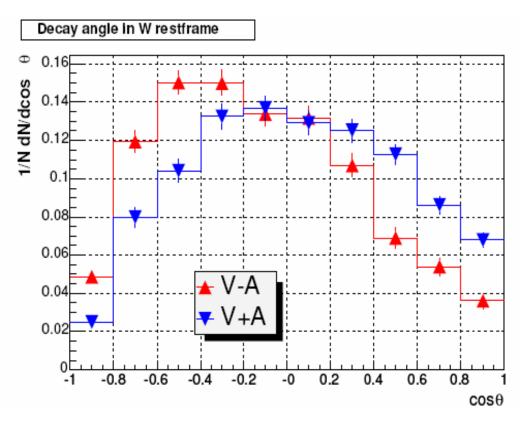


Signal and Background Discrimination

The number of multi-jet events is determined by making use of the different rate (with respect to W+jets or $t\bar{t}$) to fake leptons.

The number of tt and W+jets events is extracted by making use of the likelihood discriminant distribution:

- By performing a fit (b-tag analysis)
- By performing a cut and using the cut efficiency determined in Monte Carlo (Topological analysis).


b-tag selection: L>0.1 (μ) L>0.3 (e)

Channel	tt	W+jets	Multi-jets
μ+jets	9.6 ± 2.7	2.0 ± 1.4	0.7 ± 0.4
e+jets	14.2 ± 3.4	6.6 ± 1.8	0.6 ± 0.3

Topological selection: L>0.6

Channel	tī	W+jets	Multi-jets
μ+jets	11.3 ± 1.3	17.6 ± 1.2	2.1 ± 0.5
e+jets	25.9 ± 1.5	20.3 ± 1.5	2.7 ± 0.5

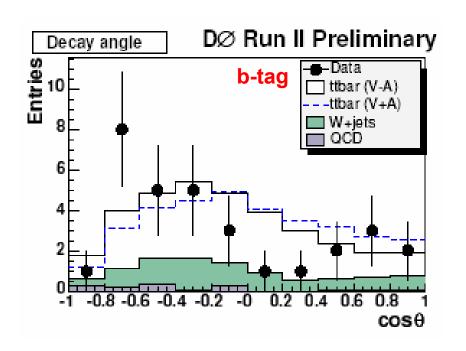
Cos(θ) Templates

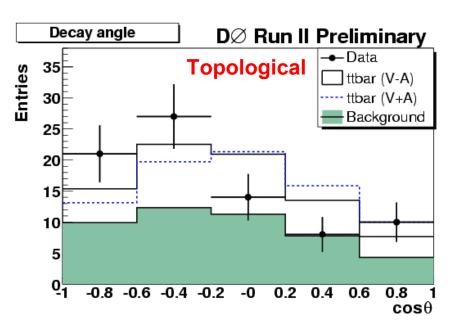
Kinematic constraint fit:

• Reconstruct four vectors of all particles. Minimize χ^2 defined as:

•
$$\chi^2 = (\vec{x} - \vec{x}_M)G^{-1}(\vec{x} - \vec{x}_M)^T$$

- $m(jj) = m(Iv) = m_W = 80.4 GeV$.
- $m(jjl) = m(ljv) = m_t = 175.0 GeV$.
- 12 possible jet-parton assignments
- \rightarrow Choose solution with lowest χ^2 .

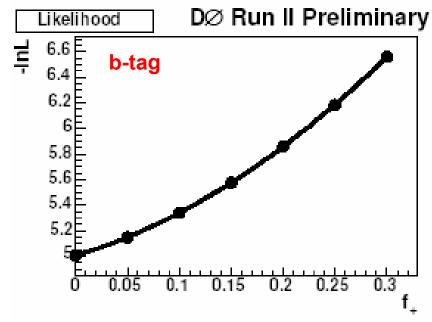

• Signal *cos*(θ) templates:


- f_{+} = 0.0 .. 0.3 (maximum possible value) in steps of 0.05.
- f₀ fixed at 0.7.

Background templates:

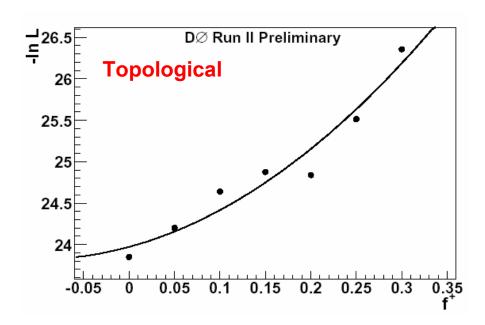
- W+jets (from Monte Carlo).
- Multijets (from data, with reversed isolation criteria for leptons)

W Helicity Measurement


f₊ is extracted by means of a binned Poisson maximum likelihood fit using the decay angle templates for Multi-jets, W+jets, and the signal templates.

The likelihood is built by multiplying the Poisson probabilities of each template bin, for each value of f₊.

Results and Limit Calculation


- Determine a confidence interval with 90% confidence level for f₊ using a Bayesian technique.
- Find upper limit with 90% C.L. since the minimum of –ln(L) lies outside the physically-allowed range.

Prior: $\pi(f_{+}) = \begin{cases} 1 & 0 \le f_{+} \le 0.3 \\ 0 & f_{+} < 0 \text{ or } f_{+} > 0.3 \end{cases}$

Central value: $f_+ = -0.13 \pm 0.23$ (stat)

f₊ < 0.24 (90% C.L.) including syst.

Central value: $f_{+} = -0.11 \pm 0.19$ (stat)

f₊ < 0.24 (90% C.L.) including syst.

Systematic Uncertainties

b-tag				
Source	Uncertainty on f₊			
Top mass	0.06			
Underlying Event	0.06			
Jet energy scale	0.07			
Likelihood fit (number of signal and background events)	0.02 (µ) 0.01 (e)			
Monte Carlo statistics	0.01			
W+jets heavy flavor composition	0.01			
Total	0.11			

i opologica:			
Source	Uncertainty on f₊		
Top mass	0.11		
Jet energy scale	0.04		
ttbar model	0.05		
W+jets model	0.08		

Total

Topological

Factor of ~1.5-2 smaller than statistical errors.

- Systematic uncertainties are incorporated in the limit calculation by convoluting a Gaussian function —of width given by the total systematic uncertainty- with the likelihood.
- The magnitude of each systematic uncertainty is estimated by running ensemble tests:
 - Create toy experiments with modified templates.
 - Likelihood fit using standard templates.
 - Observe shift in the maximum of the likelihood.

08/18/2004

0.15

Summary

- First DØ Measurement of the V+A component in the tbW vertex using topological and lifetime b-tagging techniques.
- Analysis based on the decay angle between the lepton and the original W momentum in the W boson rest frame.

```
f_+ < 0.24 (90% C.L.) Topological. f_+ < 0.24 (90% C.L.) b-tag.
```

Results including systematic uncertainties.

- Preliminary results are in agreement with the SM prediction.
- Two analyses will be combined into a single result.
- Set the ground for more precise measurement:

 Expect improvements from larger data sample (~0.5 fb⁻¹ by the end of 2004) and by the use of more sophisticated techniques being developed.